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ABSTRACT
This paper presents an initial analysis of how maximally
general and accurate rules can be evolved in a Pittsburgh-
style classifier system. In order to be able to perform such
analysis we introduce a simple bare-bones Pittsburgh clas-
sifier systems—the compact classifier system (CCS)—based
on estimation of distribution algorithms. Using a common
rule encoding scheme of Pittsburgh classifier systems, CCS
maintains a dynamic set of probability vectors that com-
pactly describe a rule set. The compact genetic algorithm
is used to evolve each of the initially perturbed probability
vectors which represents the rules. Results show how CCS is
able to evolve in a compact, simple, and elegant manner rule
sets composed by maximally general and accurate rules.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Concept Learning.

General Terms
Algorithms, Design, Theory.

Keywords
Learning Classifier Systems, Maximally General Classifiers,
Compact Classifier System, Spawning and Merging Popula-
tions.

1. INTRODUCTION
The work of Wilson in 1995 [7] was the starter of a ma-

jor shift on the way that fitness was computed on classifier
systems of the so call Michigan approach. Accuracy be-
came a central element in the process of computing the fit-
ness of rules (or classifiers). With the inception of XCS, the
evolved rules targeted became the ones that were maximally
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general (cover a large number of examples) and maximally
accurate (lower error). After a decade since the paper pub-
lished by Wilson, such road has been shown to be a success-
ful one. However, few attempts have been made to do the
same revision exercise on the Pittsburgh-style classifier sys-
tems. This paper revisits Wilson’s work and applies some of
the his original ideas to Pittsburgh-style classifier systems.
We present how such rules may be evolved using a simple
bare-bones Pittsburgh-style classifier systems—the compact
classifier system (CCS)—based on estimation of distribution
algorithms. The initial results achieved show that the en-
coding scheme of the rules and the bias introduced in the
process play a central role on the overall performance and
scalability of CCS—and by extension to other Pittsburgh-
style classifier systems.

2. LEARNING MAXIMALLY GENERAL
AND ACCURATE RULES

In order to promote maximally general and accurate rules
a la XCS [7], we need to compute the accuracy of a rule (α)
and its error (ε). In a Pittsburgh-style classifier, the accu-
racy may be computed as the proportion of overall examples
correctly classified, whereas the error is the proportion of
incorrect classifications issued by the activation of the rule.
Such a measure is independent of the rule encoding used [6].
For computation simplicity we assume ε(r) = 1 when all the
predictions are accurate, and ε(r) = 0 when all were incor-
rectly issued. Let nt+ be the number of positive examples
correctly classified, nt− the number of negative examples
correctly classified, nm the number of times that a rule has
been matched, and nt the number of examples available.
Using this values the accuracy and error of a rule r can be
computed as:

α(r) =
nt+(r) + nt−(r)

nt
(1)

ε(r) =
nt+

nm
(2)

It is worth to note that the error (equation 2) only take into
account the number of correct positive examples classified1.
This is a byproduct of the close world assumption of this
knowledge representation. Once the accuracy and error of a

1We also assume that if a rule is never matched, no error is
made and, hence, ε(r) = 1.

1893



rule are known, the fitness can be computed as follows.

f(r) = α(r) · ε(r)γ (3)

Such fitness favors rules with a good classification accuracy
and a low error, or maximally general and accurate rules.
Throughout the rest of this paper we assume γ = 1. Tra-
ditional Pittsburgh-style classifier systems mainly relied on
some sort of fitness based only on equation 1 [1, 3, 5], in-
troducing no bias toward maximally general and accurate
rules.

3. THE COMPACT CLASSIFIER SYSTEM
Evolving a rule set may be regarded as a multimodal opti-

mization of the particular fitness function at hand—equation
3—and some approaches have been proposed [4]. Unfortu-
nately, such approaches have two significant drawbacks af-
ter the Pittsburgh-style literature. The first one is that the
maximum number of possible rules is fixed a priori. The
second drawback is the parallel evolution of the different
rules of the chromosome. Each rule evolves on a particular
direction, thus is possible that the same rule appears more
than once in the rule set.

In order to evolve maximally general and accurate rules,
we use the compact genetic algorithm (cGA) [2]. It is im-
portant to mention here, that such algorithm does not pro-
vide any nitching capability and, hence, will only produce
one accurate and maximally general rule after optimizing
equation 3. A first step toward rule set learning relies on
perturbating the initial probability vector with an uniform
noise. Several runs of cGA using different perturbed initial
probability vectors may lead to different accurate and max-
imally general rules. Instead of the initial cGA probability
vector p0

xi
= 0.5, we used

p0
xi

= 0.5 + U(−0.4, 0.4). (4)

The probability vector evolved by the cGA represents a
population of candidate rules treated as a single optima
problem. If we want to evolve a rule set that contains n
rules, then n probability vectors are required. This leads to
two important questions: (1) when to spawn a new proba-
bility vector, and (2) when to fuse two probability vectors
because they describe the same rule.

The simplest spawning criteria we use in the CCS is the
rule set fitness. Given a set D of probability distribution
vectors, we can form a rule set R by sampling each of them.
Then, if f(R) < 1.0 then the problem is not accurately
solved and, thus, a new probability distribution vector needs
to be spawned and added to D. Our current research as-
sumes noise-free problems with perfect information, such as
the multiplexer. Further research will be needed in the pres-
ence of noise, since f(R) < 1.0 may not be achievable due
to noise interference. On the other hand, the criteria to
decide when to fuse two probability vectors in CCS uses
rule information instead. Based on such mechanism, we can
assume that we can compute—using a simple Euclidean dis-
tance how different—two probability vectors are—d(pi, pj).
Moreover, since we deal with a binary encoding, there is a
threshold θ below which they represent the same rule pop-
ulation. Two probability vectors may be different if the is
a chance that at least one bit is different. Hence, the strict
value for θ is 1/�. Relaxing θ value may lead to an implicit
bounding of the maximum number of different probability

Table 1: Algorithmic description of the CCS.

1. D ← {pert(p0), . . . , pert(pk)}.
2. Foreach pi ∈ D run cGA.
3. R ← {ri sampled from pi}.
4. Compute f(R) using equation 3.
5. If given pi, pj ∈ D and d(pi, pj) < θ

then D ← D \ {pi}.
6. If f(R) = 1.0 return R

else D ← D ∪ {pert(p)} and goto 2.

vectors in D. Table 1 presents the algorithmic description
of CCS, integrating the required elements to evolve a rule
set composed of maximally general and accurate rules.

4. CONCLUSIONS
Preliminary results showed that the scalability of CCS—

and by extension, of other Pittsburgh-style systems—using
the multiplexer problem tend to scale exponentially with the
number of address bits [6]. For each multiplexer problem
there are, at least, 2k maximally accurate rules, where k
is the number of address bits. Another scalability factor
unveiled by CCS is the rule encoding scheme. The encoding
scheme proposed by De Jong & Spears [1] adds an extra
element of difficulty as the problem size increases, due to
the exponential growth of unmatchable rules [6].
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